Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Pharmacol Res ; 202: 107136, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460778

RESUMEN

CREB-regulated transcription coactivator 1 (CRTC1), a pivotal synaptonuclear messenger, regulates synaptic plasticity and transmission to prevent depression. Despite exhaustive investigations into CRTC1 mRNA reductions in the depressed mice, the regulatory mechanisms governing its transcription remain elusive. Consequently, exploring rapid but non-toxic CRTC1 inducers at the transcriptional level is important for resisting depression. Here, we demonstrate the potential of D-arabinose, a unique monosaccharide prevalent in edible-medicinal plants, to rapidly enter the brain and induce CRTC1 expression, thereby eliciting rapid-acting and persistent antidepressant responses in chronic restrain stress (CRS)-induced depressed mice. Mechanistically, D-arabinose induces the expressions of peroxisome proliferator-activated receptor gamma (PPARγ) and transcription factor EB (TFEB), thereby activating CRTC1 transcription. Notably, we elucidate the pivotal role of the acetyl-CoA synthetase short-chain family member 2 (ACSS2) as an obligatory mediator for PPARγ and TFEB to potentiate CRTC1 transcription. Furthermore, D-arabinose augments ACSS2-dependent CRTC1 transcription by activating AMPK through lysosomal AXIN-LKB1 pathway. Correspondingly, the hippocampal down-regulations of ACSS2, PPARγ or TFEB alone failed to reverse CRTC1 reductions in CRS-exposure mice, ultimately abolishing the anti-depressant efficacy of D-arabinose. In summary, our study unveils a previously unexplored role of D-arabinose in activating the ACSS2-PPARγ/TFEB-CRTC1 axis, presenting it as a promising avenue for the prevention and treatment of depression.


Asunto(s)
Arabinosa , PPAR gamma , Ratones , Animales , PPAR gamma/genética , PPAR gamma/metabolismo , Arabinosa/farmacología , Arabinosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Encéfalo/metabolismo
2.
Cell Rep ; 43(2): 113787, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363681

RESUMEN

The spontaneous migration of bone marrow neutrophils (BMNs) is typically induced by distant tumor cells during the early stage of the tumor and critically controls tumor progression and metastases. Therefore, identifying the key molecule that prevents this process is extremely important for suppressing tumors. Interleukin-37 (IL-37) can suppress pro-inflammatory cytokine generation via an IL-1R8- or Smad3-mediated pathway. Here, we demonstrate that human neutrophil IL-37 is responsively reduced by tumor cells and the recombinant IL-37 isoform d (IL-37d) significantly inhibits spontaneous BMN migration and tumor lesion formation in the lung by negatively modulating CCAAT/enhancer binding protein beta (C/EBPß) in a Lewis lung carcinoma (LLC)-inducing lung cancer mouse model. Mechanistically, IL-37d promotes C/EBPß ubiquitination degradation by facilitating ubiquitin ligase COP1 recruitment and disrupts C/EBPß DNA binding abilities, thereby reducing neutrophil ATP generation and migration. Our work reveals an anti-tumor mechanism for IL-37 via destabilization of C/EBPß to prevent spontaneous BMN migration and tumor progression.


Asunto(s)
Carcinoma Pulmonar de Lewis , Neutrófilos , Ratones , Animales , Humanos , Neutrófilos/metabolismo , Citocinas/metabolismo , Pulmón/metabolismo
3.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38332049

RESUMEN

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Asunto(s)
Homeostasis , PPAR gamma , Sirtuina 1 , Animales , PPAR gamma/metabolismo , Ratones , Sirtuina 1/metabolismo , Sirtuina 1/genética , Acetato CoA Ligasa/metabolismo , Acetato CoA Ligasa/genética , Ratones Endogámicos C57BL , Humanos , Obesidad/metabolismo , Obesidad/patología , Factores de Transcripción/metabolismo , Dieta Alta en Grasa , Masculino , Tejido Adiposo Pardo/metabolismo , Termogénesis , Manosa/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Tejido Adiposo Blanco/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tejido Adiposo/metabolismo
4.
Transl Psychiatry ; 13(1): 338, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37914710

RESUMEN

The potentiation of synaptic plasticity and serotonin generation by brain-derived neurotrophic factor (BDNF) and tryptophan hydroxylase 2 (TPH2) is well characterized to facilitate rapid and long-lasting antidepressant actions. Therefore, the identification of the key protein that simultaneously controls both BDNF and TPH2 is important for the treatment of depression. We show here that a lack of acetyl-CoA synthetase short-chain family member 2 (ACSS2) causes impairments in BDNF-dependent synaptic plasticity and tryptophan hydroxylase 2 (TPH2)-mediated serotonin generation, thereby contributing to spontaneous and chronic restraint stress (CRS)-induced depressive-like behavior in mice. Conversely, D-mannose is identified as a rapid ACSS2 inducer and thus mediates rapid and long-lasting antidepressant-like effects. Mechanistically, acute and chronic D-mannose administration inhibits the phosphorylation of EF2 to increase BDNF levels and reverse the reduction of TPH2 histone acetylation and transcription. We reveal that ACSS2 promotes TPH2 histone acetylation and transcription with the requirement of AMPK activation. To elevate nuclear ACSS2 levels, D-mannose can rapidly and persistently activate AMPK via Ca2+-CAMKK2 and the lysosomal AXIN-LKB1 pathway to facilitate its fast-acting and persistent antidepressant responses. Taken together, the results presented here reveal that ACSS2 functions as a novel target to link rapid and persistent antidepressant actions and further suggest that D-mannose is a potential therapeutic agent to resist depression through its augmentation of the ACSS2 dependent BDNF and TPH2 pathways.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Histonas , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Manosa , Serotonina/metabolismo , Triptófano Hidroxilasa , Proteínas Quinasas Activadas por AMP/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
5.
Metabolism ; 148: 155690, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717724

RESUMEN

BACKGROUND: The liver regulates metabolic balance during fasting-feeding cycle. Hepatic adaptation to fasting is precisely modulated on multiple levels. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) is a negative regulator of immunity that reduces several liver pathologies, but its physiological roles in hepatic metabolism are largely unknown. METHODS: TIPE2 expression was examined in mouse liver during fasting-feeding cycle. TIPE2-knockout mice, liver-specific TIPE2-knockout mice, liver-specific TIPE2-overexpressed mice were examined for fasting blood glucose and pyruvate tolerance test. Primary hepatocytes or liver tissues from these mice were evaluated for glucose production, lipid accumulation, gene expression and regulatory pathways. TIPE2 interaction with Raf-1 and TIPE2 transcription regulated by PPAR-α were examined using gene overexpression or knockdown, co-immunoprecipitation, western blot, luciferase reporter assay and DNA-protein binding assay. RESULTS: TIPE2 expression was upregulated in fasted mouse liver and starved hepatocytes, which was positively correlated with gluconeogenic genes. Liver-specific TIPE2 deficiency impaired blood glucose homeostasis and gluconeogenic capacity in mice upon fasting, while liver-specific TIPE2 overexpression elevated fasting blood glucose and hepatic gluconeogenesis in mice. In primary hepatocytes upon starvation, TIPE2 interacted with Raf-1 to accelerate its ubiquitination and degradation, resulting in ERK deactivation and FOXO1 maintenance to sustain gluconeogenesis. During prolonged fasting, hepatic TIPE2 deficiency caused aberrant activation of ERK-mTORC1 axis that increased hepatic lipid accumulation via lipogenesis. In hepatocytes upon starvation, PPAR-α bound with TIPE2 promoter and triggered its transcriptional expression. CONCLUSIONS: Hepatocyte TIPE2 is a PPAR-α-induced Raf-1 inactivator that sustains hepatic gluconeogenesis and prevents excessive hepatic lipid accumulation, playing beneficial roles in hepatocyte adaptation to fasting.

6.
Redox Biol ; 67: 102877, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37690164

RESUMEN

The senescence of adipose stem cells (ASCs) impairs healthy adipose tissue remodeling, causing metabolic maladaptation to energy surplus. The intrinsic molecular pathways and potential therapy targets for ASC senescence are largely unclear. Here, we showed that visceral ASCs were prone to senescence that was caused by reactive oxygen species (ROS) overload, especially mitochondrial ROS. These senescent ASCs failed to sustain efficient glucose influx, pentose phosphate pathway (PPP) and redox homeostasis. We showed that CD90 silence restricted the glucose uptake by ASCs and thus disrupted their PPP and anti-oxidant system, resulting in ASC senescence. Notably, fibroblast growth factor 21 (FGF21) treatment significantly reduced the senescent phenotypes of ASCs by augmenting CD90 protein via glycosylation, which promoted glucose influx via the AKT-GLUT4 axis and therefore mitigated ROS overload. For diet-induced obese mice, chronic administration of low-dose FGF21 relieved their visceral white adipose tissue (VAT) dysfunction and systemic metabolic disorders. In particular, VAT homeostasis was restored in FGF21-treated obese mice, where ASC repertoire was markedly recovered, accompanied by CD90 elevation and anti-senescent phenotypes in these ASCs. Collectively, we reveal a molecular mechanism of ASC senescence by which CD90 downregulation interferes glucose influx into PPP and redox homeostasis. And we propose a FGF21-based strategy for healthy VAT remodeling, which targets CD90 glycosylation to correct ASC senescence and therefore combat obesity-related metabolic dysfunction.


Asunto(s)
Tejido Adiposo Blanco , Glucosa , Animales , Ratones , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Senescencia Celular , Glucosa/metabolismo , Glicosilación , Ratones Obesos , Obesidad/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Antígenos Thy-1/metabolismo
7.
Mol Immunol ; 162: 84-94, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37660434

RESUMEN

Vacuolar-type H+-ATPase (V-ATPase) critically controls phagosome acidification to promote pathogen digestion and clearance in macrophage. However, the specific subunits of V-ATPase have been evidenced to play contradictory functions in inflammatory cytokines generation and secretion exposure to external bacterial or LPS stimulation. Therefore, identifying the unique function of the separate subunit of V-ATPase is extremely important to regulate macrophage function. Here, we found that D-mannose, a C-2 epimer of glucose, suppressed ATP6V1B2 lysosomal translocation to inhibit V-ATPase activity in macrophages, thereby causing the scaffold protein axis inhibitor protein (AXIN) recruitment to lysosomal membrane and AMPK activation. Correspondingly, LPS-stimulated macrophage M1 polarization was significantly suppressed by D-mannose via down-regulating NF-κB signaling pathway in response to AMPK activation, while IL-4 induced macrophage M2 polarization were not affected. Furthermore, the failure of lysosomal localization of ATP6V1B2 caused by D-mannose also led to the acidification defects of lysosome. Therefore, D-mannose displayed a remarkable function in inhibiting macrophage phagocytosis and bacterial killing. Taken together, D-mannose acts a novel V-ATPase suppressor to attenuate macrophage inflammatory production but simultaneously prevent macrophage phagocytosis and bacterial killing.


Asunto(s)
Adenosina Trifosfatasas , Citocinas , Manosa/farmacología , Proteínas Quinasas Activadas por AMP , Lipopolisacáridos/farmacología , Macrófagos
8.
Cell Rep ; 42(5): 112424, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086405

RESUMEN

Adipose-derived stem cells (ASCs) drive healthy visceral adipose tissue (VAT) expansion via adipocyte hyperplasia. Obesity induces ASC senescence that causes VAT dysfunction and metabolic disorders. It is challenging to restrain this process by biological intervention, as mechanisms of controlling VAT ASC senescence remain unclear. We demonstrate that a population of CX3CR1hi macrophages is maintained in mouse VAT during short-term energy surplus, which sustains ASCs by restraining their senescence, driving adaptive VAT expansion and metabolic health. Long-term overnutrition induces diminishment of CX3CR1hi macrophages in mouse VAT accompanied by ASC senescence and exhaustion, while transferring CX3CR1hi macrophages restores ASC reservoir and triggers VAT beiging to alleviate the metabolic maladaptation. Mechanistically, visceral ASCs attract macrophages via MCP-1 and shape their CX3CR1hi phenotype via exosomes; these macrophages relieve ASC senescence by promoting the arginase1-eIF5A hypusination axis. These findings identify VAT CX3CR1hi macrophages as ASC supporters and unravel their therapeutic potential for metabolic maladaptation to obesity.


Asunto(s)
Adipocitos , Grasa Intraabdominal , Animales , Ratones , Grasa Intraabdominal/metabolismo , Adipocitos/metabolismo , Macrófagos/metabolismo , Obesidad/metabolismo , Senescencia Celular , Tejido Adiposo/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo
9.
PLoS One ; 17(6): e0267960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35679273

RESUMEN

Tobacco black shank is a kind of soil-borne disease caused by the Oomycete Phytophthora parasitica. This disease is one of the most destructive diseases to tobacco (Nicotiana tabacum L.) growth worldwide. At present, various measures have been taken to control this disease, but they still have different challenges and limitations. Studies have shown that ß-aminobutyric acid (BABA), a nonprotein amino acid, can enhance disease resistance in plants against different varieties of pathogens. However, it is unclear whether BABA can induce plants to resist Phytophthora parasitica infection. Therefore, this study aims to explore the effect and related mechanism of BABA against tobacco black shank. Our results showed that 5 mmol.L-1 BABA had an obvious anti-inducing effect on the pathogenic fungus and could effectively inhibit the formation of dark spots in the stems. The results also showed that a large amount of callose deposition was observed in BABA-treated tobacco. Furthermore, the application of BABA induced the accumulation of H2O2 in tobacco and effectively regulated the homeostasis of reactive oxygen in tobacco plants, reducing the toxicity of H2O2 to plants while activating the defense system. In addition, BABA spray treatment could induce an increase in the concentrations of salicylic acid (SA) and jasmonic acid-isoleucine (JA-Ile) in tobacco, and the gene expression results confirmed that BABA upregulated the expression of SA-related genes (PR1, PR2 and PR5), JA-related genes (PDF1.2) and ET-related genes (EFE26 and ACC oxidase) in tobacco plants. Taken together, BABA could activate tobacco resistance to black shank disease by increasing H2O2 accumulation, callose deposition, plant hormone (SA and JA-Ile) production, and SA-, JA-, and ET- signaling pathways.


Asunto(s)
Arabidopsis , Nicotiana , Aminobutiratos , Arabidopsis/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Nicotiana/genética
10.
Cell Death Discov ; 8(1): 163, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383145

RESUMEN

White adipose tissue (WAT) homeostasis substantiated by type 2 immunity is indispensable to counteract obesity and metabolic disorders. IL-33/suppression of tumorigenicity (ST) 2 signaling promotes type 2 response in WAT, while potential regulators remain to be discovered. We identified human IL-37 isoform D (IL-37D) as an effective trigger for ST2-mediated type 2 immune homeostasis in WAT. IL-37D transgene amplified ST2+ immune cells, promoted M2 macrophage polarization and type 2 cytokine secretion in WAT that mediate beiging and inflammation resolution, thereby increasing energy expenditure, reducing obesity and insulin resistance in high-fat diet (HFD)-fed mice. Mechanistically, either endogenous or exogenous IL-37D inhibited soluble ST2 (sST2) production from WAT challenged with HFD or TNF-α. Recombinant sST2 impaired the beneficial effects of IL-37D transgene in HFD-fed mice, characterized by damaged weight loss, insulin action, and type 2 cytokine secretion from WAT. In adipose-derived stem cells, IL-37D inhibited TNF-α-stimulated sST2 expression through IL-1 receptor 8 (IL-1R8)-dependent NF-κB inactivation. Collectively, human IL-37D suppresses sST2 to boost type 2 immune homeostasis in WAT, which may be a promising therapy target for obesity and metabolic disorders.

11.
Brain Behav Immun ; 102: 98-109, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35181439

RESUMEN

Hyper-inflammatory reaction plays a crucial role in the pathophysiology of depression and anxiety disorders. However, the mechanisms underlying inflammation-induced anxiety changes remain poorly understood. Here, we showed that in the lipopolysaccharide (LPS)-induced anxiety model, Interleukin (IL)-33, a member of the IL-1 family, was up-regulated in the basolateral amygdala, and IL-33 deficiency prevent anxiety-like behavior. Overexpression of IL-33 in amygdalar astrocytes led to anxiety-like response via repressing brain-derived neurotrophic factor (BDNF) expression. Mechanically, IL-33 suppressed BDNF expression through NF-κB pathway to impair GABAergic transmission in the amygdala and NF-κB inhibitor abolished the effect of IL-33 on anxiety. Administration of an inverse GABAA receptor agonist increased the anxiety of IL-33- deficient mice. These results reveal that inflammatory response can activate anxiogenic circuits by suppressing BDNF and GABAergic neurons transmission, suggesting that IL-33 in basolateral amygdalar is a linker between inflammation and anxiety.


Asunto(s)
Complejo Nuclear Basolateral , Factor Neurotrófico Derivado del Encéfalo , Interleucina-33 , FN-kappa B , Animales , Ansiedad/metabolismo , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Inflamación/metabolismo , Inflamación/patología , Interleucina-33/metabolismo , Ratones , FN-kappa B/metabolismo , Enfermedades Neuroinflamatorias/metabolismo
12.
Cell Death Dis ; 12(11): 1077, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34772918

RESUMEN

Depression is one of the most common psychiatric disorders. Recently, studies demonstrate that antidepressants generating BDNF not only maintain synaptic signal transmission but also repress neuroinflammatory cytokines such as IL-6 and IL-1ß. Therefore, promoting BDNF expression provides a strategy for the treatment of depression. Our recent research has indicated that programmed cell death 4 (Pdcd4) is a new target for antidepressant treatment by facilitating BDNF. Herein, we modified Pdcd4 specific small interfering RNA (siPdcd4) with the rabies virus glycoprotein peptide (RVG/siPdcd4) which enables it cross the blood-brain barrier (BBB). We found that RVG/siPdcd4 complex was selectively delivered to neurons and microglia and silenced the expression of Pdcd4, thereby up-regulating the level of BDNF and down-regulating IL-6 and IL-1ß expression. More importantly, RVG/siPdcd4 injection attenuated synaptic plasticity impairment and protected mice from CRS-induced depressive behavior. These findings suggest that RVG/siPdcd4 complex is a potential therapeutic medicine for depression.


Asunto(s)
Apoptosis/genética , Conducta Animal/fisiología , Muerte Celular/genética , Trastorno Depresivo Mayor/genética , ARN Interferente Pequeño/genética , Animales , Humanos , Masculino , Ratones
13.
Mol Nutr Food Res ; 65(19): e2100315, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34363644

RESUMEN

INTRODUCTION: Obesity causes many life-threatening diseases. It is important to develop effective approaches for obesity treatment. Oral supplementation with spermidine retards age-related processes, but its influences on obesity and various metabolic tissues remain largely unknow. This study aims to investigate the effects of oral spermidine on brown adipose tissue (BAT) and skeletal muscle as well as its roles in counteracting obesity and metabolic disorders. METHODS AND RESULTS: Spermidine is orally administrated into high-fat diet (HFD)-fed mice. The weight gain, insulin resistance, and hepatic steatosis are attenuated by oral spermidine in HFD-fed mice, accompanied by an alleviation of white adipose tissue inflammation. Oral spermidine promotes BAT activation and metabolic adaptation of skeletal muscle in HFD-fed mice, evidenced by UCP-1 induction and CREB activation in both tissues. Notably, oral spermidine upregulates tyrosine hydroxylase in hypothalamus of HFD-fed mice; spermidine treatment increases tyrosine hydroxylase expression and norepinephrine production in neurocytes, which leads to CREB activation and UCP-1 induction in brown adipocytes and myotubes. Spermidine also directly promotes UCP-1 and PGC-1α expression in brown adipocytes and myotubes. CONCLUSION: Spermidine serves as an oral supplement to attenuate obesity and metabolic disorders through hypothalamus-dependent or -independent BAT activation and skeletal muscle adaptation.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Obesidad/tratamiento farmacológico , Espermidina/administración & dosificación , Espermidina/farmacología , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Administración Oral , Animales , Dieta Alta en Grasa/efectos adversos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Resistencia a la Insulina , Masculino , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/etiología , Paniculitis/tratamiento farmacológico , Paniculitis/etiología , Tirosina 3-Monooxigenasa/metabolismo
14.
Arch Pharm Res ; 44(4): 427-438, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33847919

RESUMEN

Over the past 100 years, Salvia miltiorrhiza f. alba (Lamiaceae) (RSMA) roots have been used to cure thromboangiitis obliterans (TAO) in local clinics. This study aimed to confirm the anti-thrombotic efficacy of 12 phenolic acids obtained from RSMA and to clarify the possible underlying mechanisms. The results of quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that most of the phenolic acids markedly inhibited PAI-1 protein and mRNA levels but increased t-PA protein and mRNA levels in TNF-α-induced EA.hy926 cells (P < 0.05 or 0.001), with lithospermic acid displaying the strongest effect. In vitro anticoagulation and antiplatelet aggregation assays showed that lithospermic acid and salvianolic acid B significantly prolonged prothrombin time (PT), activated partial thromboplastin time (APTT), decreased fibrinogen concentration (FIB), and inhibited platelet aggregation induced by adenosine diphosphate (ADP) in rat blood. Both lithospermic acid and salvianolic acid B markedly down-regulated the expression of factor Xa and factor IIa on the external surface of EA.hy926 cells and demonstrated significant anti-factor IIa and anti-factor Xa activity using chromogenic substrates in vitro. Western blot results revealed that both lithospermic acid and salvianolic acid B also significantly inhibited the expression of TF, p-p65, p-p38, and pJNK proteins induced by TNF-α. These results indicated that all of the phenolic acids appeared to have some anti-thrombotic activity, with salvianolic acid B and lithospermic acid markedly decreasing the chance of thrombosis by regulating the NF-κB/JNK/p38 MAPK signaling pathway in response to TNF-α.


Asunto(s)
Anticoagulantes/farmacología , Hidroxibenzoatos/farmacología , Salvia miltiorrhiza/química , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Anticoagulantes/química , Anticoagulantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/aislamiento & purificación , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/genética , FN-kappa B/metabolismo , Tiempo de Protrombina , Ratas , Ratas Wistar , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Mol Psychiatry ; 26(6): 2316-2333, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203159

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a growth factor that plays vital roles in the neuron survival, growth, and neuroplasticity. Alteration to BDNF expression is associated with major depressive disorder. However, the BDNF translational machinery in depression remains unknown. Herein, we pointed that Pdcd4, a suppressor oncogene, acted as an endogenous inhibitor for the translation of BDNF, and selectively repressed the translation of BDNF splice variant IIc mRNA in an eIF4A-dependent manner. Chronic restraint stress (CRS) up-regulated Pdcd4 expression in hippocampus via decreasing mTORC1-mediated proteasomes degradation pathway, which resulted in the reduction of BDNF protein expression. Moreover, over-expression of Pdcd4 in the hippocampus triggered spontaneous depression-like behaviors under the non-stressed conditions in mice, while systemic or neuron-specific knockout of Pdcd4 reverses CRS-induced depression-like behaviors. Importantly, administration of Pdcd4 siRNA or an interfering peptide that interrupts the Pdcd4-eIF4A complex substantially promoted BDNF expression and rescued the behavioral disorders which were caused by CRS. Overall, we have discovered a previously unrecognized role of Pdcd4 in controlling BDNF mRNA translation, and provided a new method that boosting BDNF expression through blocking the function of Pdcd4 in depression, indicating that Pdcd4 might be a new potential target for depressive disorder therapy.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Trastorno Depresivo Mayor , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Factor Neurotrófico Derivado del Encéfalo/genética , Depresión/genética , Trastorno Depresivo Mayor/genética , Factor 4A Eucariótico de Iniciación/genética , Ratones , Proteínas de Unión al ARN
16.
Inflamm Bowel Dis ; 27(1): 84-93, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32582954

RESUMEN

BACKGROUND: Interleukin-37 (IL-37) is a new negative immune regulator. It has 5 splicing forms, IL-37a-e, and most research mainly focuses on IL-37b functions in diverse diseases. Our previous research found that IL-37d inhibits lipopolysaccharide-induced inflammation in endotoxemia through a mechanism different from that of IL-37b. However, whether IL-37d plays a role in colitis and the underlying mechanisms is still obscure. Herein, we identified whether IL-37d regulates NLRP3 inflammasome activity and determined its effect on colitis. METHODS: NLRP3 inflammasome in macrophages from IL-37d transgenic (IL-37dtg) and control wild type (WT) mice were activated by lipopolysaccharide and adenosine 5'-triphosphate. The expression of NLRP3 inflammasome components and its downstream effector, IL-1ß, were detected by real-time polymerase chain reaction, western blot, and ELISA. The models of alum-induced peritonitis and dextran sodium sulfate (DSS)-induced colitis were used to investigate the function of IL-37d on regulating the activity of NLRP3 inflammasome in vivo. RESULTS: Our results showed that the activation of NLRP3 inflammasome in macrophage and alum-induced peritonitis was inhibited by IL-37d. Strikingly, IL-37d suppressed NLRP3 expression at the priming step via inhibiting NF-κB activation by transcriptional profiling. Moreover, the recombinant protein IL-37d attenuated NLRP3 inflammasome activation and the production of IL-1ß, which could be reversed by IL-1R8 knockdown. Finally, IL-37d transgenic mice resisted DSS-induced acute colitis and NLRP3 inflammasome activation. CONCLUSION: Interleukin-37d inhibits overactivation of the NLRP3 inflammasome through regulating NLRP3 transcription in an IL-1R8 receptor-mediated signaling pathway.


Asunto(s)
Colitis/inmunología , Interleucina-1/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Receptores de Interleucina-1/inmunología , Animales , Colitis/inducido químicamente , Colitis/genética , Sulfato de Dextran , Modelos Animales de Enfermedad , Inflamasomas/inmunología , Ratones , Ratones Transgénicos , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcripción Genética/genética , Transcripción Genética/inmunología
17.
Cell Death Differ ; 28(4): 1237-1250, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33100324

RESUMEN

Transcription factor EB (TFEB) is a master regulator of autophagy and lysosomal biogenesis. The post-translational phosphorylation modulations of TFEB by mTOR and ERK signaling can determine its nucleocytoplasmic shuttling and activity in response to nutrient availability. However, regulations of TFEB at translational level are rarely known. Here, we found that programmed cell death 4 (PDCD4), a tumor suppressor, decreased levels of nuclear TFEB to inhibit lysosome biogenesis and function. Mechanistically, PDCD4 reduces global pool of TFEB by suppressing TFEB translation in an eIF4A-dependent manner, rather than influencing mTOR- and ERK2-dependnet TFEB nucleocytoplasmic shuttling. Both of MA3 domains within PDCD4 are required for TFEB translation inhibition. Furthermore, TFEB is required for PDCD4-mediated lysosomal function suppression. In the tumor microenvironment, PDCD4 deficiency promotes the anti-tumor effect of macrophage via enhancing TFEB expression. Our research reveals a novel PDCD4-dependent TFEB translational regulation and supports PDCD4 as a potential therapeutic target for lysosome dysfunction related diseases.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Lisosomas/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
18.
Autophagy ; 17(6): 1410-1425, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32460619

RESUMEN

Macroautophagy/autophagy is an evolutionarily conserved process that involves the selective degradation of cytoplasmic components within lysosomes in response to starvation. Autophagy is an ancient defense mechanism that has been closely integrated with the immune system and has multiple effects on innate and adaptive immunity. The pro-inflammatory and anti-inflammatory cytokines can activate and inhibit autophagy, respectively. TNFAIP8L2/TIPE2 (tumor necrosis factor, alpha-induced protein 8-like 2) is a newly identified immune negative regulator of innate and adaptive immunity that plays an important role in immune homeostasis. However, whether and how TNFAIP8L2 controls autophagy is still unknown. Murine TNFAIP8L2 can directly bind to and block the RAC1 GTPase activity to regulate innate immunity. RAC1 can also bind to MTOR and regulate MTORC1 cellular localization and activity. Here, we find that TNFAIP8L2 can compete with MTOR for binding to the GTP-bound state of RAC1 and negatively regulate MTORC1 activity. Interestingly, TNFAIP8L2 overexpression fails to induce autophagy flux by the suppression of the MTOR activity under glutamine and serum starvation. Instead, TNFAIP8L2 appears to impair autophagic lysosome reformation (ALR) during prolonged starvation. Finally, we demonstrate that TNFAIP8L2 overexpression leads to a defect in MTOR reactivation and disrupts autophagy flux, thereby leading to cell death. Furthermore, TNFAIP8L2 deficiency can exacerbate the inflammatory response and lung injury by controlling the MTOR activity in an LPS-induced mouse endotoxemia model. Our study reveals a novel role of TNFAIP8L2 in autophagy by regulating the RAC1-MTORC1 axis that supports its potential as a target for therapeutic treatment.Abbreviations: ALR: autophagic lysosome reformation; BafA1: bafilomycin A1; BMDMs: bone marrow-derived macrophages; Co-IP: Co-Immunoprecipitation; LAMP1: lysosomal associated membrane protein 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MTORC1: mechanistic target of rapamycin kinase complex 1; RAPA: rapamycin; RPS6: ribosomal protein S6; SQSTM1/p62: sequestosome 1; Starv: Starvation; TNFAIP8L2/TIPE2: tumor necrosis factor-alpha-induced protein-8 like-2.


Asunto(s)
Autofagia/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Neuropéptidos/metabolismo , Fagocitosis/fisiología , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Unión al GTP rac1/metabolismo
19.
Nat Commun ; 11(1): 2280, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385245

RESUMEN

Renal macrophages (RMs) participate in tissue homeostasis, inflammation and repair. RMs consist of embryo-derived (EMRMs) and bone marrow-derived RMs (BMRMs), but the fate, dynamics, replenishment, functions and metabolic states of these two RM populations remain unclear. Here we investigate and characterize RMs at different ages by conditionally labeling and ablating RMs populations in several transgenic lines. We find that RMs expand and mature in parallel with renal growth after birth, and are mainly derived from fetal liver monocytes before birth, but self-maintain through adulthood with contribution from peripheral monocytes. Moreover, after the RMs niche is emptied, peripheral monocytes rapidly differentiate into BMRMs, with the CX3CR1/CX3CL1 signaling axis being essential for the maintenance and regeneration of both EMRMs and BMRMs. Lastly, we show that EMRMs have a higher capacity for scavenging immune complex, and are more sensitive to immune challenge than BMRMs, with this difference associated with their distinct glycolytic capacities.


Asunto(s)
Células de la Médula Ósea/citología , Linaje de la Célula , Riñón/embriología , Macrófagos/citología , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CX3CL1/sangre , Quimiocina CX3CL1/metabolismo , Femenino , Feto/citología , Hígado/embriología , Masculino , Ratones , Monocitos/citología
20.
Stem Cell Res Ther ; 10(1): 355, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31779686

RESUMEN

BACKGROUND: White adipose tissue includes subcutaneous and visceral adipose tissue (SAT and VAT) with different metabolic features. SAT protects from metabolic disorders, while VAT promotes them. The proliferative and adipogenic potentials of adipose-derived stem cells (ADSCs) are critical for maintaining adipose tissue homeostasis through driving adipocyte hyperplasia and inhibiting pathological hypertrophy. However, it remains to be elucidated the critical molecules that regulate different potentials of subcutaneous and visceral ADSCs (S-ADSCs, V-ADSCs) and mediate distinct metabolic properties of SAT and VAT. CD90 is a glycosylphosphatidylinositol-anchored protein on various cells, which is also expressed on ADSCs. However, its expression patterns and differential regulation on S-ADSCs and V-ADSCs remain unclear. METHODS: S-ADSCs and V-ADSCs were detected for CD90 expression. Proliferation, colony formation, cell cycle, mitotic clonal expansion, and adipogenic differentiation were assayed in S-ADSCs, V-ADSCs, or CD90-silenced S-ADSCs. Glucose tolerance test and adipocyte hypertrophy were examined in mice after silencing of CD90 in SAT. CD90 expression and its association with CyclinD1 and Leptin were analyzed in adipose tissue from mice and humans. Regulation of AKT by CD90 was detected using a co-transfection system. RESULTS: Compared with V-ADSCs, S-ADSCs expressed high level of CD90 and showed increases in proliferation, mitotic clonal expansion, and adipogenic differentiation, together with AKT activation and G1-S phase transition. CD90 silencing inhibited AKT activation and S phase entry, thereby curbing proliferation and mitotic clonal expansion of S-ADSCs. In vivo CD90 silencing in SAT inhibited S-ADSC proliferation, which caused adipocyte hypertrophy and glucose intolerance in mice. Furthermore, CD90 was highly expressed in SAT rather than in VAT in human and mouse, which had positive correlation with CyclinD1 but negative correlation with Leptin. CD90 promoted AKT activation through recruiting its pleckstrin homology domain to plasma membrane. CONCLUSIONS: CD90 is differentially expressed on S-ADSCs and V-ADSCs, and plays critical roles in ADSC proliferation, mitotic clonal expansion, and hemostasis of adipose tissue and metabolism. These findings identify CD90 as a crucial modulator of S-ADSCs and V-ADSCs to mediate distinct metabolic features of SAT and VAT, thus proposing CD90 as a valuable biomarker or target for evaluating ADSC potentials, monitoring or treating obesity-associated metabolic disorders.


Asunto(s)
Homeostasis , Grasa Intraabdominal/metabolismo , Células Madre Mesenquimatosas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Grasa Subcutánea Abdominal/metabolismo , Antígenos Thy-1/metabolismo , Animales , Ciclina D1/biosíntesis , Activación Enzimática , Grasa Intraabdominal/citología , Leptina/biosíntesis , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Especificidad de Órganos , Grasa Subcutánea Abdominal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...